A robust MR-based attenuation map generation in short-TE MR images of the head employing hybrid spatial fuzzy C-means clustering and intensity inhomogeneity correction

نویسندگان

  • Mohammad Hadi Aarabi
  • Anahita Fathi Kazerooni
  • Parisa Khateri
  • Mohammad Reza Ay
  • Hamidreza Saligheh Rad
چکیده

Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran Deriving an accurate attenuation correction map (μ-map) from magnetic resonance (MR) volumes has become an important problem in hybrid PET/MR imaging. Recently, short echo-time (STE) MR imaging technique incorporating fuzzy C-means (FCM) tissue classification and 2-point Dixon image acquisition has been introduced as a feasible approach for segmentation of the bone from air and soft tissue. However, this method imposes additional imaging and the performance of the standard FCM algorithm, suffering from the lack of spatial information, becomes impaired in the presence of inherent noise and intensity inhomogeneity. Here, we exploit a spatial fuzzy C-means (SFCM) segmentation algorithm in combination with a robust intensity inhomogeneity correction method on single STE-MR images, to differentiate various tissue classes. MR images of five subjects were acquired on a clinical 1.5T MRI System, MAGNETOM Avanto, using a FLASH 3D pulse sequence with TE=1.1ms, TR=12ms, flip angle=18°, voxel size=1.2×1.2×2mm. The proposed segmentation approach consists of four main steps: (1) Intensity-inhomogeneity correction, to separate air and bone in the regions with high inhomogeneity, like the nasal areas; (2) applying SFCM to segment the images into four clusters including air, a part of soft tissue and bone, and two other soft tissue classes. Upon this step, the air cluster would be accurately separated; (3) employing shape factor analysis to remove the eyes with close signal intensity to that of bone; and (4) μ-map generation by downsampling and assigning attenuation coefficients to the corresponding segmented tissues. Quantitative evaluation indicated sensitivity of over 95% for air and soft tissue and about 81% in the bony region, and specificity of over 95% for all tissue classes. The proposed STE-MR imaging in combination with the segmentation technique could be potentially exploited as an efficient approach to generate MR-based attenuation correction maps in clinical PET/MR applications, where bone and air coexist. Aarabi et al. EJNMMI Physics 2014, 1(Suppl 1):A49 http://www.ejnmmiphys.com/content/1/S1/A49

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fully automated and reproducible level-set segmentation approach for generation of MR-based attenuation correction map of PET images in the brain employing single STE-MR imaging modality

Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Tehran University of Medical Sciences, Tehran, Iran Generating MR-based attenuation correction map (μ-map) for quantitative reconstruction of PET images still remains a challenge in hybrid PET/MRI systems, mainly because cortical bone structures are indistinguishable from proximal air cavities in...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

A Modified Adaptive Fuzzy C-Means Clustering Algorithm For Brain MR Image Segmentation

Fuzzy c-means (FCM) clustering has been widely used in image segmentation. However, in spite of its computational efficiency and wide spread popularity, the FCM algorithm does not take the spatial information of pixels into consideration, and hence may result in low robustness to noise and less accurate segmentation. In this paper, a modified adaptive fuzzy c-means clustering (AFCM) algorithm i...

متن کامل

Improved Intensity Inhomogeneity Correction Techniques in MR Brain Image Segmentation

Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a pre-filtering technique for Gaussian and impulse noise elimination, and a s...

متن کامل

A hybrid method for generation of attenuation map for MR-based attenuation correction of PET data in prostate PET/MR imaging

Department of Medical Physics and Biomedical Engineering and Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran Recently introduced PET/MRI scanners present significant advantages in comparison with PET/CT. However, the lack of accurate method for generation of μmap from MR images for implementation of MRAC is hampering further development. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014